Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics

Author:

Hasson Christopher J.123,Goodman Sarah E.2

Affiliation:

1. Neuromotor Systems Laboratory, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts

2. Department of Bioengineering, Northeastern University, Boston, Massachusetts

3. Department of Biology, Northeastern University, Boston, Massachusetts

Abstract

This work aimed to understand the sensorimotor processes used by humans when learning how to manipulate a virtual model of locomotor dynamics. Prior research shows that when interacting with novel dynamics humans develop internal models that map neural commands to limb motion and vice versa. Whether this can be extrapolated to locomotor rehabilitation, a continuous and rhythmic activity that involves dynamically complex interactions, is unknown. In this case, humans could default to model-free strategies. These competing hypotheses were tested with a novel interactive locomotor simulator that reproduced the dynamics of hemiparetic gait. A group of 16 healthy subjects practiced using a small robotic manipulandum to alter the gait of a virtual patient (VP) that had an asymmetric locomotor pattern modeled after stroke survivors. The point of interaction was the ankle of the VP’s affected leg, and the goal was to make the VP’s gait symmetric. Internal model formation was probed with unexpected force channels and null force fields. Generalization was assessed by changing the target locomotor pattern and comparing outcomes with a second group of 10 naive subjects who did not practice the initial symmetric target pattern. Results supported the internal model hypothesis with aftereffects and generalization of manipulation skill. Internal models demonstrated refinements that capitalized on the natural pendular dynamics of human locomotion. This work shows that despite the complex interactive dynamics involved in shaping locomotor patterns, humans nevertheless develop and use internal models that are refined with experience.NEW & NOTEWORTHY This study aimed to understand how humans manipulate the physics of locomotion, a common task for physical therapists during locomotor rehabilitation. To achieve this aim, a novel locomotor simulator was developed that allowed participants to feel like they were manipulating the leg of a miniature virtual stroke survivor walking on a treadmill. As participants practiced improving the simulated patient’s gait, they developed generalizable internal models that capitalized on the natural pendular dynamics of locomotion.

Funder

Northeastern University (NEU)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3