Affiliation:
1. Department of Neuroscience, Brown University, Providence, Rhode Island 02912
Abstract
L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of dihydropyridine-sensitive L-type calcium channels is that they are high-voltage–activating and have slow activation kinetics. These properties limit the involvement of L-type calcium channels to neuronal functions triggered by strong and sustained depolarizations. This review highlights literature, both long-standing and recent, that points to significant functional diversity among L-type calcium channels expressed in neurons and other excitable cells. Past literature contains several reports of low-voltage–activated neuronal L-type calcium channels that parallel the unique properties of recently cloned CaV1.3 L-type channels. The fast kinetics and low activation thresholds of CaV1.3 channels stand in stark contrast to criteria currently used to describe L-type calcium channels. A more accurate view of neuronal L-type calcium channels encompasses a broad range of activation thresholds and recognizes their potential contribution to signaling cascades triggered by subthreshold depolarizations.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
359 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献