A New Trick for an Old Dogma: ENaC Proteins as Mechanotransducers in Vascular Smooth Muscle

Author:

Drummond Heather A.1,Grifoni Samira C.1,Jernigan Nikki L.2

Affiliation:

1. Department of Physiology and Biophysics, and Center for Excellence in Cardio-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi; and

2. Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico,

Abstract

Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans ( C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.

Publisher

American Physiological Society

Subject

Physiology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epithelial Na + Channels Function as Extracellular Sensors;Comprehensive Physiology;2024-03-29

2. Autoregulation of cerebral blood flow in normal and pathological conditions;"Arterial’naya Gipertenziya" ("Arterial Hypertension");2023-11-07

3. Triglyceride-glucose index on risk of adverse events after drug-coated balloon angioplasty;Lipids in Health and Disease;2023-10-28

4. Vascular mechanotransduction;Physiological Reviews;2023-04-01

5. An update regarding the role of WNK kinases in cancer;Cell Death & Disease;2022-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3