Movement Reduces the Dynamic Response of Muscle Spindle Afferents and Motoneuron Synaptic Potentials in Rat

Author:

Haftel Valerie K.,Bichler Edyta K.,Nichols T. Richard,Pinter Martin J.,Cope Timothy C.

Abstract

Among the mechanisms that may result in modulation of the stretch reflex by the recent history of muscle contraction is the history dependence observed under some conditions in the response properties of muscle spindles. The present study was designed to test one report that in successive trials of muscle stretch-release, spindle afferent firing during stretch, i.e., the dynamic response shows no history dependence beyond the initial burst of firing at stretch onset. Firing responses of spindle afferents were recorded during sets of three consecutive trials of triangular stretch-release applied to triceps surae muscles in barbiturate-anesthetized rats. All 69 spindle afferents fired more action potentials (spikes) during the dynamic response of the first trial, excluding the initial burst, than in the following two trials. The reduced dynamic response (RDR) was nearly complete after trial 1 and amounted to an average of ∼12 fewer spikes (16 pps slower firing rate) in trial 3 than in trial 1. RDR was sensitive to the interval between stretch sets but independent of stretch velocity (4–32 mm/s). RDR was reflected in the synaptic potentials recorded intracellularly from 16 triceps surae α-motoneurons: depolarization during muscle stretch was appreciably reduced after trial 1. These findings demonstrate history dependence of spindle afferent responses that extends throughout the dynamic response in successive muscle stretches and that is synaptically transmitted to motoneurons with the probable effect, unless otherwise compensated, of modulating the stretch reflex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3