Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish

Author:

Scalise Karina1,Shimizu Takashi2,Hibi Masahiko2,Sawtell Nathaniel B.1

Affiliation:

1. Department of Neuroscience, Columbia University, New York, New York; and

2. Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, Japan

Abstract

Although most studies of the cerebellum have been conducted in mammals, cerebellar circuitry is highly conserved across vertebrates, suggesting that studies of simpler systems may be useful for understanding cerebellar function. The larval zebrafish is particularly promising in this regard because of its accessibility to optical monitoring and manipulations of neural activity. Although several studies suggest that the cerebellum plays a role in behavior at larval stages, little is known about the signals conveyed by particular classes of cerebellar neurons. Here we use electrophysiological recordings to characterize subthreshold, simple spike, and climbing fiber responses in larval zebrafish Purkinje cells in the context of the fictive optomotor response (OMR)—a paradigm in which fish adjust motor output to stabilize their virtual position relative to a visual stimulus. Although visual responses were prominent in Purkinje cells, they lacked the direction or velocity sensitivity that would be expected for controlling the OMR. On the other hand, Purkinje cells exhibited strong responses during fictive swim bouts. Temporal characteristics of these responses are suggestive of a general role for the larval zebrafish cerebellum in controlling swimming. Climbing fibers encoded both visual and motor signals but did not appear to encode signals that could be used to adjust OMR gain, such as retinal slip. Finally, the observation of diverse relationships between simple spikes and climbing fiber responses in individual Purkinje cells highlights the importance of distinguishing between these two types of activity in calcium imaging experiments.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3