Reduction of Zolpidem Sensitivity in a Freeze Lesion Model of Neocortical Dysgenesis

Author:

Defazio R. Anthony1,Hablitz John J.1

Affiliation:

1. Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

DeFazio, R. Anthony and John J. Hablitz. Reduction of zolpidem sensitivity in a freeze lesion model of neocortical dysgenesis. J. Neurophysiol. 81: 404–407, 1999. Early postnatal freeze lesions in rat neocortex produce anatomic abnormalities resembling those observed in human patients with seizure disorders. Although in vitro brain slices containing the lesion are hyperexcitable, the mechanisms of this alteration have yet to be elucidated. To test the hypothesis that changes in postsynaptic inhibitory receptors may underlie this hyperexcitability, we examined properties of γ-aminobutyric acid type A receptor (GABAAR)–mediated miniature inhibitory postsynaptic currents (mIPSCs). Recordings were obtained in layer II/III pyramidal cells located 1–2 mm lateral to the lesion. mIPSC peak amplitude and rate of rise were increased relative to nonlesioned animals, whereas decay time constant and interevent interval were unaltered. Bath application of zolpidem at a concentration (20 nM) specific for activation of the type 1 benzodiazepine receptor had no significant effect on decay time constant in six of nine cells. Exposure to higher concentrations (100 nM) enhanced the decay time constant of all cells tested ( n = 7). Because mIPSCs from unlesioned animals were sensitive to both concentrations of zolpidem, these results suggest that freeze lesions may decrease the affinity of pyramidal cell GABAARs for zolpidem. This could be mediated via a change in α-subunit composition of the GABAAR, which eliminates the type 1 benzodiazepine receptor.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3