Contrast Rectification and Distributed Encoding Byon-off Amacrine Cells in the Retina

Author:

Burkhardt Dwight A.12,Fahey Patrick K.2

Affiliation:

1. Departments of Psychology and

2. Physiology, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

The encoding of luminance contrast by on-off amacrine cells was investigated by intracellular recording in the retina of the tiger salamander ( Ambystoma tigrinum). Contrast flashes of positive and negative polarity were applied at the center of the receptive field while the entire retina was light adapted to a background field of 20 cd/m2. Many amacrine cells showed remarkably high contrast gain: Up to 20–35% of the maximum response was evoked by a contrast step of only 1%. In the larger signal domain, C50, the contrast required to evoke a response 50% of the maximum, was often remarkably low: 24 of 25 cells had a C50 value of ≤10% for at least one contrast polarity. Across cells and contrast polarity, the dynamic ranges varied from extremely narrow to broad, thereby blanketing the range of reflectances associated with objects in natural environments. Although some cells resembled “contrast rectifiers,” by showing similar responses to contrasts of opposite polarity, many did not. Thus for contrast gain and C50, individual cells could show a strong preference for either negative or positive contrast. In the time domain, the preference was strong and unidirectional: for equal contrast steps, the latency of the response to negative contrast was 20–45 ms shorter than that for positive contrast. The present results, when compared with those for bipolar cells, suggest that, on average, amacrine cells add some amplification, particularly for negative contrast, to the high contrast gain already established by bipolar cells. In the time domain, our data reveal a striking transformation from bipolar to amacrine cells in favor of negative contrast. These and further observations have implications for the input and output of amacrine cell circuits. The present finding of substantial differences between cells reveals a potential substrate for distributed encoding of luminance contrast within the on-off amacrine cell population.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3