Effect of Extracellular pH on GABA-Activated Current in Rat Recombinant Receptors and Thin Hypothalamic Slices

Author:

Huang Ren-Qi1,Dillon Glenn H.1

Affiliation:

1. Department of Pharmacology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107

Abstract

We studied the effects of extracellular pH (pHo) on γ-aminobutyric acid (GABA)–mediated Cl current in rat hypothalamic neurons and recombinant type-A GABA (GABAA) receptors stably expressed in human embryonic kidney cells (HEK 293), using whole cell and outside-out patch-clamp recordings. In α3β2γ2s receptors, acidic pH decreased, whereas alkaline pH increased the response to GABA in a reversible and concentration-dependent manner. Acidification shifted the GABA concentration-response curve to the right, significantly increasing the EC50 for GABA without appreciably changing the slope or maximal current induced by GABA. We obtained similar effects of pH in α1β2γ2 receptors and in GABA-activated currents recorded from thin hypothalamic brain slices. In outside-out patches recorded from α3β2γ2 recombinant receptors, membrane patches were exposed to 5 μM GABA at control (7.3), acidic (6.4), or alkaline (8.4) pH. GABA activated main and subconductance states of 24 and 16 pS, respectively, in α3β2γ2 receptors. Alkaline pHo increased channel opening frequency and decreased the duration of the long closed state, resulting in an increase in open probability (from 0.0801 ± 0.015 in pH 7.3 to 0.138 ± 0.02 in pH 8.4). Exposure of the channels to acidic pHo had the opposite effects on open probability (decreased to 0.006 ± 0.0001). Taken together, our results indicate that the function of GABAA receptors is modulated by extracellular pH. The proton effect is similar in recombinant and native receptors and is dependent on GABA concentration. In addition, the effect appears to be independent of the α-subunit isoform, and is due to the ability of H+ to alter the frequency of channel opening. Our findings indicate that GABAergic signaling in the CNS may be significantly altered during conditions that increase or decrease pH.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3