Horizontal Vestibuloocular Reflex Evoked by High-Acceleration Rotations in the Squirrel Monkey. II. Responses After Canal Plugging

Author:

Lasker David M.1,Backous Douglas D.1,Lysakowski Anna2,Davis Griffin L.1,Minor Lloyd B.134

Affiliation:

1. Departments of Otolaryngology—Head and Neck Surgery,

2. Department of Anatomy, University of Illinois College of Medicine, Chicago, Illinois 60612-7300

3. Biomedical Engineering, and

4. Neuroscience, The Johns Hopkins University, Baltimore, Maryland 21287-0910; and

Abstract

The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral plugging of the three semicircular canals. During the period (1–4 days) that animals were kept in darkness after plugging, the gain during steps of acceleration (3,000°/s2, peak velocity = 150°/s) was 0.61 ± 0.14 (mean ± SD) for contralesional rotations and 0.33 ± 0.03 for ipsilesional rotations. Within 18–24 h after animals were returned to light, the VOR gain for contralesional rotations increased to 0.88 ± 0.05, whereas there was only a slight increase in the gain for ipsilesional rotations to 0.37 ± 0.07. A symmetrical increase in the gain measured at the plateau of head velocity was noted after animals were returned to light. The latency of the VOR was 8.2 ± 0.4 ms for ipsilesional and 7.1 ± 0.3 ms for contralesional rotations. The VOR evoked by sinusoidal rotations of 0.5–15 Hz, ±20°/s had no significant half-cycle asymmetries. The recovery of gain for these responses after plugging was greater at lower than at higher frequencies. Responses to rotations at higher velocities for frequencies ≥4 Hz showed an increase in contralesional half-cycle gain, whereas ipsilesional half-cycle gain was unchanged. A residual response that appeared to be canal and not otolith mediated was noted after plugging of all six semicircular canals. This response increased with frequency to reach a gain of 0.23 ± 0.03 at 15 Hz, resembling that predicted based on a reduction of the dominant time constant of the canal to 32 ms after plugging. A model incorporating linear and nonlinear pathways was used to simulate the data. The coefficients of this model were determined from data in animals with intact vestibular function. Selective increases in the gain for the linear and nonlinear pathways predicted the changes in recovery observed after canal plugging. An increase in gain of the linear pathway accounted for the recovery in VOR gain for both responses at the velocity plateau of the steps of acceleration and for the sinusoidal rotations at lower peak velocities. The increase in gain for contralesional responses to steps of acceleration and sinusoidal rotations at higher frequencies and velocities was due to an increase in the gain of the nonlinear pathway. This pathway was driven into inhibitory cutoff at low velocities and therefore made no contribution for rotations toward the ipsilesional side.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3