Simultaneous Reorganization in Thalamocortical Ensembles Evolves Over Several Hours After Perioral Capsaicin Injections

Author:

Katz Donald B.1,Simon S. A.1,Moody Aaron2,Nicolelis Miguel A. L.1

Affiliation:

1. Department of Neurobiology, Duke University Medical Center, Durham, 27710; and

2. Department of Geography, University of North Carolina, Chapel Hill, North Carolina 27599-3220

Abstract

Reorganization of the somatosensory system was quantified by simultaneously recording from single-unit neural ensembles in the whisker regions of the ventral posterior medial (VPM) nucleus of the thalamus and the primary somatosensory (SI) cortex in anesthetized rats before, during, and after injecting capsaicin under the skin of the lip. Capsaicin, a compound that excites and then inactivates a subset of peripheral C and Aδ fibers, triggered increases in spontaneous firing of thalamocortical neurons (10–15 min after injection), as well as rapid reorganization of the whisker representations in both the VPM and SI. During the first hour after capsaicin injection, 57% of the 139 recorded neurons either gained or lost at least one whisker response in their receptive fields (RFs). Capsaicin-related changes continued to emerge for ≥6 h after the injection: Fifty percent of the single-neuron RFs changed between 1–2 and 5–6 h after capsaicin injection. Most (79%) of these late changes represented neural responses that had remained unchanged in the first postcapsaicin mapping; just under 20% of these late changes appeared in neurons that had previously shown no plasticity of response. The majority of the changes (55% immediately after injection, 66% 6 h later) involved “unmasking” of new tactile responses. RF change rates were comparable in SI and VPM (57–49%). Population analysis indicated that the reorganization was associated with a lessening of the “spatial coupling” between cortical neurons—a significant reduction in firing covariance that could be related to distances between neurons. This general loss of spatial coupling, in conjunction with increases in spontaneous firing, may create a situation that is favorable for the induction of synaptic plasticity. Our results indicate that the selective inactivation of a peripheral nociceptor subpopulation can induce rapid and long-evolving (≥6 h) shifts in the balance of inhibition and excitation in the somatosensory system. The time course of these processes suggest that thalamic and cortical plasticity is not a linear reflection of spinal and brainstem changes that occur following the application of capsaicin.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3