Cellular Properties of Lateral Spinal Nucleus Neurons in the Rat L6–S1 Spinal Cord

Author:

Jiang M. C.1,Liu L.1,Gebhart G. F.1

Affiliation:

1. Department of Pharmacology, College of Medicine, University of Iowa, Iowa City, Iowa 52242

Abstract

Cellular properties of lateral spinal nucleus neurons in the rat L6–S1 spinal cord. Conventional intracellular recordings were made from 26 lateral spinal nucleus (LSN) neurons in slices of L6–S1 spinal cord from 10- to 15-day-old rats. At rest, LSN neurons did not fire spontaneous action potentials. With injection of a positive current pulse, action potentials had an amplitude of 72 ± 7 (SD) mV and duration at half-peak height of 0.75 ± 0.22 ms. Action potentials were followed by an afterpotential. Most LSN neurons (13/17) exhibited only an afterhyperpolarization (AHP); four neurons exhibited both a fast and a slow AHP separated by an afterdepolarization (ADP). For LSN neurons that exhibited only an AHP, a slow ADP could be identified during bath application of apamin (100 nM). Four of 11 LSN neurons showed a postinhibitory rebound (PIR). Two types of PIR were noted, one with high threshold and low amplitude and the other with low threshold and high amplitude. The PIR with high amplitude was partially blocked in 0 mM Ca2+/high Mg2+ (10 mM) recording solution. Repetitive firing properties were examined in 17 LSN neurons. On the basis of the ratio of the slopes between initial instantaneous firing and steady-state firing frequencies, neurons with low spike frequency adaptation (SFA, 8/17) and high SFA (4/17) were identified. In addition, 2/17 LSN neurons exhibited biphasic repetitive firing patterns, which were composed of a fast SFA, delayed excitation, and low SFA; another two neurons showed only delayed excitation. Plateau potentials also were found in two LSN neurons. Dorsal root stimulation revealed that most LSN neurons (12/13) had polysynaptic postsynaptic potentials (PSP); only one neuron exhibited a monosynaptic PSP. Electrical stimulation of the dorsal root evoked prolonged discharges in low SFA neurons and a short discharge in high SFA neurons. Intrinsic properties were modulated by bath application of substance P (SP). Membrane potentials were depolarized in all eight LSN neurons tested, and membrane resistance was either increased ( n = 3) or decreased ( n = 2). Both instantaneous firing and steady-state firing were facilitated by SP. In addition, oscillation of membrane potentials were induced in three LSN neurons. These results demonstrate that LSN neurons exhibit a variety of intrinsic properties, which may significantly contribute to sensory processing, including nociceptive processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3