Epinephrine Produces a β-Adrenergic Receptor-Mediated Mechanical Hyperalgesia and In Vitro Sensitization of Rat Nociceptors

Author:

Khasar Sachia G.1,McCarter Gordon1,Levine Jon D.1

Affiliation:

1. Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience and Biomedical Sciences Program, National Institutes of Health Pain Center (UCSF), University of California, San Francisco, California 94143-0440

Abstract

Epinephrine produces a β-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of nociceptor-like neurons in the rat. Hyperalgesic and nociceptor sensitizing effects mediated by the β-adrenergic receptor were evaluated in the rat. Intradermal injection of epinephrine, the major endogenous ligand for the β-adrenergic receptor, into the dorsum of the hindpaw of the rat produced a dose-dependent mechanical hyperalgesia, quantified by the Randall-Selitto paw-withdrawal test. Epinephrine-induced hyperalgesia was attenuated significantly by intradermal pretreatment with propranolol, a β-adrenergic receptor antagonist, but not by phentolamine, an α-adrenergic receptor antagonist. Epinephrine-induced hyperalgesia developed rapidly; it was statistically significant by 2 min after injection, reached a maximum effect within 5 min, and lasted 2 h. Injection of a more β-adrenergic receptor-selective agonist, isoproterenol, also produced dose-dependent hyperalgesia, which was attenuated by propranolol but not phentolamine. Epinephrine-induced hyperalgesia was not affected by indomethacin, an inhibitor of cyclo-oxygenase, or by surgical sympathectomy. It was attenuated significantly by inhibitors of the adenosine 3′,5′-cyclic monophosphate signaling pathway (the adenylyl cyclase inhibitor, SQ 22536, and the protein kinase A inhibitors, Rp-adenosine 3′,5′-cyclic monophosphate and WIPTIDE), inhibitors of the protein kinase C signaling pathway (chelerythrine and bisindolylmaleimide) and a μ-opioid receptor agonist DAMGO ([d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin). Consistent with the hypothesis that epinephrine produces hyperalgesia by a direct action on primary afferent nociceptors, it was found to sensitize small-diameter dorsal root ganglion neurons in culture, i.e., to produce an increase in number of spikes and a decrease in latency to firing during a ramped depolarizing stimulus. These effects were blocked by propranolol. Furthermore epinephrine, like several other direct-acting hyperalgesic agents, caused a potentiation of tetrodotoxin-resistant sodium current, an effect that was abolished by Rp-adenosine 3′,5′-cyclic monophosphate and significantly attenuated by bisindolylmaleimide. Isoproterenol also potentiated tetrodotoxin-resistant sodium current. In conclusion, epinephrine produces cutaneous mechanical hyperalgesia and sensitizes cultured dorsal root ganglion neurons in the absence of nerve injury via an action at a β-adrenergic receptor. These effects of epinephrine are mediated by both the protein kinase A and protein kinase C second-messenger pathways.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3