Passive Normalization of Synaptic Integration Influenced by Dendritic Architecture

Author:

Jaffe David B.1,Carnevale Nicholas T.2

Affiliation:

1. Division of Life Sciences, University of Texas at San Antonio, San Antonio, Texas 78249; and

2. Department of Psychology, Yale University, New Haven, Connecticut 06520

Abstract

We examined how biophysical properties and neuronal morphology affect the propagation of individual postsynaptic potentials (PSPs) from synaptic inputs to the soma. This analysis is based on evidence that individual synaptic activations do not reduce local driving force significantly in most central neurons, so each synapse acts approximately as a current source. Therefore the spread of PSPs throughout a dendritic tree can be described in terms of transfer impedance ( Zc ), which reflects how a current applied at one location affects membrane potential at other locations. We addressed this topic through four lines of study and uncovered new implications of neuronal morphology for synaptic integration. First, Zc was considered in terms of two-port theory and contrasted with dendrosomatic voltage transfer. Second, equivalent cylinder models were used to compare the spatial profiles of Zc and dendrosomatic voltage transfer. These simulations showed that Zc is less affected by dendritic location than voltage transfer is. Third, compartmental models based on morphological reconstructions of five different neuron types were used to calculate Zc , input impedance ( ZN ), and voltage transfer throughout the dendritic tree. For all neurons, there was no significant variation of Zc with location within higher-order dendrites. Furthermore, Zc was relatively independent of synaptic location throughout the entire cell in three of the five neuron types (CA3 interneurons, CA3 pyramidal neurons, and dentate granule cells). This was quite unlike ZN , which increased with distance from the soma and was responsible for a parallel decrease of voltage transfer. Fourth, simulations of fast excitatory PSPs (EPSPs) were consistent with the analysis of Zc ; peak EPSP amplitude varied <20% in the same three neuron types, a phenomenon that we call “passive synaptic normalization” to underscore the fact that it does not require active currents. We conclude that the presence of a long primary dendrite, as in CA1 or neocortical pyramidal cells, favors substantial location-dependent variability of somatic PSP amplitude. In neurons that lack long primary dendrites, however, PSP amplitude at the soma will be much less dependent on synaptic location.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3