Analysis of Multiquantal Transmitter Release From Single Cultured Cortical Neuron Terminals

Author:

Prange Oliver1,Murphy Timothy H.23

Affiliation:

1. Graduate Program in Neuroscience;

2. Department of Psychiatry; and

3. Department of Physiology, Kinsmen Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

Abstract

Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. Application of single synapse recording methods indicates that the amplitude of postsynaptic responses of single CNS synapses can vary greatly among repeated stimuli. To determine whether this observation could be attributed to synapses releasing a variable number of transmitter quanta, we assessed the prevalence of multiquantal transmitter release in primary cultures of cortical neurons with the action potential (AP)-dependent presynaptic turnover of the styryl dye FM1–43 ( Betz and Bewick 1992 , 1993 ; Betz et al. 1996 ). It was assumed that if a high proportion of vesicles within a terminal were loaded with FM1–43 the amount of dye released per stimulus would be proportional to the number of quanta released and/or the probability of release at a terminal. To rule out differences in the amount of release (between terminals) caused by release probability or incomplete loading of terminals, conditions were chosen to maximize both release probability and terminal loading. Three-dimensional reconstruction of terminals was employed to ensure that bouton fluorescence was accurately measured. Analysis of the relationship between the loading of terminals and release indicated that presumed larger terminals (>FM1–43 uptake) release a greater amount of dye per stimulus than smaller terminals, suggesting multiquantal release. The distribution of release amounts across terminals was significantly skewed toward higher values, with 13–17% of synaptic terminals apparently releasing multiple quanta per AP. In conclusion, our data suggest that most synaptic terminals release a relatively constant amount of transmitter per stimulus; however, a subset of terminals releases amounts of FM1–43 that are greater than that expected from a unimodal release process.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3