Proprioceptive and Retinal Afference Modify Postsaccadic Ocular Drift

Author:

Lewis Richard F.1,Zee David S.1,Goldstein Herschel P.2,Guthrie Barton L.3

Affiliation:

1. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287;

2. Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; and

3. Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

Drift of the eyes after saccades produces motion of images on the retina (retinal slip) that degrades visual acuity. In this study, we examined the contributions of proprioceptive and retinal afference to the suppression of postsaccadic drift induced by a unilateral ocular muscle paresis. Eye movements were recorded in three rhesus monkeys with a unilateral weakness of one vertical extraocular muscle before and after proprioceptive deafferentation of the paretic eye. Postsaccadic drift was examined in four visual states: monocular viewing with the normal eye (4-wk period); binocular viewing (2-wk period); binocular viewing with a disparity-reducing prism (2-wk period); and monocular viewing with the paretic eye (2-wk period). The muscle paresis produced vertical postsaccadic drift in the paretic eye, and this drift was suppressed in the binocular viewing condition even when the animals could not fuse. When the animals viewed binocularly with a disparity-reducing prism, the drift in the paretic eye was suppressed in two monkeys (with superior oblique pareses) but generally was enhanced in one animal (with a tenotomy of the inferior rectus). When drift movements were enhanced, they reduced the retinal disparity that was present at the end of the saccade. In the paretic-eye–viewing condition, postsaccadic drift was suppressed in the paretic eye and was induced in the normal eye. After deafferentation in the normal-eye–viewing state, there was a change in the vertical postsaccadic drift of the paretic eye. This change in drift was idiosyncratic and variably affected the amplitude and velocity of the postsaccadic drift movements of the paretic eye. Deafferentation of the paretic eye did not affect the postsaccadic drift of the normal eye nor did it impair visually mediated adaptation of postsaccadic drift. The results demonstrate several new findings concerning the roles of visual and proprioceptive afference in the control of postsaccadic drift: disconjugate adaptation of postsaccadic drift does not require binocular fusion; slow, postsaccadic drift movements that reduce retinal disparity but concurrently increase retinal slip can be induced in the binocular viewing state; postsaccadic drift is modified by proprioception from the extraocular muscles, but these modifications do not serve to minimize retinal slip or to correct errors in saccade amplitude; and visually mediated adaptation of postsaccadic drift does not require proprioceptive afference from the paretic eye.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3