Impulse Encoding Across the Dendritic Morphologies of Retinal Ganglion Cells

Author:

Sheasby Brent W.1,Fohlmeister Jurgen F.1

Affiliation:

1. Department of Physiology, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Impulse encoding across the dendritic morphologies of retinal ganglion cells. Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set ( n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander ( Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every ganglion cell, were supplied with five voltage- or ligand-gated ion channels (plus leakage), which were distributed in accordance with those found in a recent study that employed an equivalent dendritic cylinder. A wide variety of impulse-entrainment responses was observed, including regular low-frequency firing, impulse doublets, and more complex patterns involving impulse propagation failures (or aborted spikes) within the encoder region, all of which have been observed experimentally. The impulse-frequency response curves of the cells fell into three groups called fast, medium, andslow in approximate proportion as seen experimentally. In addition to these, a new group was found among the traced cells that exhibited an impulse-frequency response twice that of thefast category. The total amount of soma-dendritic surface area exhibited by a given cell is decisive in determining its electrophysiological classification. On the other hand, we found only a weak correlation between the electrophysiological group and the morphological classification of a given cell, which is based on the complexity of dendritic branching and the physical reach or “receptive field” area of the cell. Dendritic morphology determines discharge patterns to dendritic (synaptic) stimulation. Orthodromic impulses can be initiated on the axon hillock, the thin axonal segment, the soma, or even the proximal axon beyond the thin segment, depending on stimulus magnitude, soma-dendritic membrane area, channel distribution, and state within the repetitive impulse cycle. Although a sufficiently high dendritic Na-channel density can lead to dendritic impulse initiation, this does not occur with our “standard” channel densities and is not seen experimentally. Even so, impulses initiated elsewhere do invade all except very thin dendritic processes. Impulse-encoding irregularities increase when channel conductances are reduced in the encoder region, and the F/I properties of the cells are a strong function of the calcium- and Ca-activated K-channel densities. Use of equivalent dendritic cylinders requires more soma-dendritic surface area than real dendritic trees, and the source of the discrepancy is discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects;Journal of Neural Engineering;2023-03-13

2. Edge Detection and Segmentation Type Responses in Primary Visual Cortex;Lecture Notes in Networks and Systems;2022-06-28

3. Computational Modeling of Retinal Neurons for Visual Prosthesis Research - Fundamental Approaches;Journal of Visualized Experiments;2022-06-21

4. A varying‐radius cable equation for the modelling of impulse propagation in excitable fibres;International Journal for Numerical Methods in Biomedical Engineering;2022-05-29

5. Computational Models of Neural Retina;Encyclopedia of Computational Neuroscience;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3