Characterization of the Aplysia californicaCerebral Ganglion F Cluster

Author:

Rubakhin Stanislav S.1,Li Lingjun1,Moroz Tatiana P.1,Sweedler Jonathan V.1

Affiliation:

1. Department of Chemistry and Beckman Institute, University of Illinois, Urbana, Illinois 61801

Abstract

Characterization of the Aplysia californica cerebral ganglion F cluster. The cerebral ganglia neurons of Aplysia californica are involved in the development and modulation of many behaviors. The medially located F cluster has been characterized using morphological, electrophysiological and biochemical techniques and contains at least three previously uncharacterized neuronal population. As the three subtypes are located in three distinct layers, they are designated as top, middle, and bottom layer F-cluster neurons (CFT, CFM, and CFB). The CFT cells are large (92 ± 25 μm), white, nonuniformly shaped, and located partially in the sheath surrounding the ganglion. These neurons exhibit weak electrical coupling, the presence of synchronized spontaneous changes in membrane potential, and a generalized inhibitory input upon electrical stimulation of the anterior tentacular (AT) nerve. Similar to the CFT neurons, the CFM neurons (46 ± 12 μm) are mainly silent but do not show electrical coupling or synchronized changes in membrane potential. Unlike the CFTneurons, the CFM neurons exhibit weak action potential broadening during constant current injection. Comparison of the peptide profiles of CFT, CFM, and CFB(10–30 μm) neurons using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry demonstrates distinct peptide molecular weights for each neuronal subtype with the masses of these peptides not matching any previously characterized peptides from A. californica. The mass spectra obtained from the AT nerve are similar to the CFT neuron mass spectra, while upper labial nerve contains many peptides observed in the CFMneurons located in nongranular neuron region.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3