Modulatory Effects of Myomodulin on the Excitability and Membrane Currents in Retzius Cells of the Leech

Author:

Wang Yong1,Strong Judith A.1,Sahley Christie L.1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract

Ion channel modulation by the peptide myomodulin (MM) has been demonstrated in a wide variety of organisms including Aplysia, Lymnaea, and Pleurobranchaea. This neural and muscular modulation has been shown to be important for shaping and modifying behavior. In this paper, we report that MM modulates several distinct ionic channels in another species, the medicinal leech Hirudo medicinalis. Experiments have focused on the Retzius cell (R) because the R cell is a multifunction neuron that has been implicated in a number of behaviors including feeding, swimming, secretion, thermal sensing, and the touch elicited shortening reflex and its plasticity. Previous work had identified a MM-like peptide in the leech and demonstrated that this peptide modulated the excitability of the R cell. Using combined current- and voltage-clamp techniques to examine the effects of MM on the R cell, we found that in response to a step pulse, MM increased the excitability of the R cell such that the cell fires more action potentials with a shorter latency to the first action potential. We found that this effect was mediated by the activation of a Na+-mediated inward current near the cell resting membrane potential. Second, we found that MM differentially modulated the potassium currents I A and I K. No effect of MM was found on I A, whereas MM significantly reduced both the peak and steady-state amplitudes of I Kby 49 ± 2.9% and 43 ± 7.2%, respectively (means ± SE). Finally we found that MM reduced the amplitude of the Ca2+ current by ∼20%. The ionic currents modulated by MM are consistent with the overall effect of MM on the cellular activity of the R cell. An understanding of the cellular mechanisms by which MM modulates the activity of the R cell should help us to better understand the roles of both MM and the R cell in a variety of behaviors in the leech.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3