Gustatory Neural Coding in the Cortex of the Alert Cynomolgus Macaque: The Quality of Bitterness

Author:

Scott Thomas R.1,Giza Barbara K.1,Yan Jianqun1

Affiliation:

1. Department of Psychology and Program in Neuroscience, University of Delaware, Newark, DE 19716

Abstract

Scott, Thomas R., Barbara K. Giza, and Jianqun Yan. Gustatory neural coding in the cortex of the alert cynomolgus macaque: the quality of bitterness. J. Neurophysiol. 81: 60–71, 1999. We sought to define the gustatory neural representation in primates for stimuli that humans describe as predominantly bitter. Thus we analyzed the responses of single neurons from the insular cortex of two alert, male cynomolgus macaques in response to the oral application of four basic taste stimuli (glucose, NaCl, HCl, and quinine HCl) and fruit juice, and to a series of 15 other chemicals to which humans ascribe a bitter component. Gustatory neurons occupied a volume of 109 mm3 across an area of 4.0 mm in the anterposterior plane, 4.4 mm in the mediolateral, and 6.2 mm in the dorsoventral. Taste cells represented 161 (8.6%) of the 1881 neurons tested for chemical sensitivity. Fifty of these could be monitored throughout the delivery of the entire stimulus series, and their responses constitute the data of this study. The mean spontaneous discharge rate of the cortical gustatory cells was 3.2 ± 3.3 spikes/s (range = 0.2–17.7 spikes/s). The mean breadth-of-tuning coefficient was a moderate 0.77 ± 0.15 (range = 0.25–0.99). Forty-eight neurons responded to taste stimuli with excitation, and two responded with inhibition. Forty-one of the 50 neurons were able to be classified into one of four functional types based on their responses to the four basic stimuli used here. These were sugar ( n = 22), salt ( n = 7), acid ( n = 7), and quinine ( n = 5). A two-dimensional space was generated from correlations among the response profiles elicited by the stimuli array. The 16 bitter chemicals formed a coherent group that was most closely related to HCl, moderately to NaCl, and bore no relationship with glucose. Within the bitter stimuli, six formed a subgroup that was most separated from all nonbitter chemicals: quinine HCl, phenlythiocarbamide, propylthiouracil, caffeine, theophylline, and phenylalanine. Humans describe these stimuli as rather purely bitter. Of the remaining 10 bitter compounds, 4 were on the fringe of the bitter group leading to NaCl: MgCl2, CaCl2, NH4Cl, and arginine. Humans characterize these as bitter-salty. Three were on the fringe leading to HCl: urea, cysteine and vitamin B1. Humans call these bitter-sour. The remaining three (nicotine, histidine, and vitamin B2) occupied the center of the bitter group. Taste quality, inferred from the position of each stimulus in the space, correlated well with human descriptions of the same stimuli, reinforcing the value of the macaque as a neural model for human gustation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3