Optical Mapping of Neural Network Activity in Chick Spinal Cord at an Intermediate Stage of Embryonic Development

Author:

Arai Yoshiyasu1,Momose-Sato Yoko1,Sato Katsushige1,Kamino Kohtaro1

Affiliation:

1. Department of Physiology, Tokyo Medical and Dental University School of Medicine, Tokyo 113-8519, Japan

Abstract

Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development. We have applied multiple-site optical recording of transmembrane potential changes to recording of neuronal pathway/network activity from embryonic chick spinal cord slice preparations. Spinal cord preparations were dissected from 8-day-old chick embryos at Hamburger-Hamilton stage 33, and transverse slice preparations were prepared with the 13th cervical spinal nerve or with the 2nd or 5th lumbosacral spinal nerve intact. The slice preparations were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761). Transmembrane voltage-related optical (dye-absorbance) changes evoked by spinal nerve stimulation with positive square-current pulses using a suction electrode were recorded simultaneously from many loci in the preparation, using a 128- or 1,020-element photodiode array. Optical responses were detected from dorsal and ventral regions corresponding to the posterior (dorsal) and anterior (ventral) gray horns. The optical signals were composed of two components, fast spike-like and slow signals. In the dorsal region, the fast spike-like signal was identified as the presynaptic action potential in the sensory nerve and the slow signal as the postsynaptic potential. In the ventral region, the fast spike-like signal reflects the antidromic action potential in motoneurons, and the slow signal is related to the postsynaptic potential evoked in the motoneuron. In preparations in which the ventral root was cut microsurgically, the antidromic action potential-related optical signals were eliminated. The areas of the maximal amplitude of the evoked signals in the dorsal and ventral regions were located near the dorsal root entry zone and the ventral root outlet zone, respectively. Quasiconcentric contour-line maps were obtained in the dorsal and ventral regions, suggesting the functional arrangement of the dorsal and ventral synaptic connections. Synaptic fatigue induced by repetitive stimuli in the ventral synapses was more rapid than in the dorsal synapses. The distribution patterns of the signals were essentially similar among C13, LS2, and LS5 preparations, suggesting that there is no difference in the spatiotemporal pattern of the neural responses along the rostrocaudal axis of the spinal cord at this developmental stage. In the ventral root-cut preparations, comparing the delay times between the ventral slow optical signals, we have been able to demonstrate that neural network-related synaptic connections are generated functionally in the embryonic spinal cord at Hamburger-Hamilton stage 33.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3