Seizure-Like Events in Disinhibited Ventral Slices of Adult Rat Hippocampus

Author:

Borck Cornelius1,Jefferys John G. R.1

Affiliation:

1. Department of Physiology and Biophysics, St. Mary's Hospital Medical School, Imperial College, London W2 1PG; and Department of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract

Epileptic discharges lasting 2–90 s, were studied in vitro in slices from the ventral hippocampus of adult rats, in which inhibition was blocked acutely with bicuculline methiodide (BMI, 5–30 μM) and potassium ([K+]o) raised to 5 mM. These seizure-like events (SLEs) comprised three distinct phases, called here primary, secondary, and tertiary bursts. Primary bursts lasted 90–150 ms. Secondary bursts lasted a further 70–250 ms, comprising a short series of afterdischarges riding on the same depolarization as the primary burst. Finally a train of tertiary bursts started with a peak frequency of 5–10 Hz and could last >1 min. Slices from the ventral hippocampus showed significantly higher susceptibility to SLEs than did dorsal slices. SLEs proved sensitive to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. They were insensitive to N-methyl-d-aspartate (NMDA) receptor antagonists; 50 μl d-2-amino-5-phosphonopentanoic acid (d-AP5) did block the transient secondary bursts selectively. SLEs were restricted to the hippocampus proper even if the entorhinal cortex was present. Entorhinal bursts could last <2 s and were only coupled with hippocampal bursts in a minority of slices. Reentry of epileptic bursts occasionally occurred during interictal discharges, but not during the later stages of SLEs. Full-length SLEs always started in CA3 region and could be recorded in minislices containing CA3 plus dentate hilus. Ion-sensitive microelectrodes revealed that interictal discharges were followed by short (2–3 s) [K+]o waves, peaking at ∼7.5 mM. SLEs were always accompanied by increases in [K+]oreaching ∼8.5 mM at the start of tertiary bursts; [K+]o then increased more slowly to a ceiling of 11–12 mM. After the end of each SLE, [K+]o fell back to baseline within 10–15 s. SLEs were accompanied by significant increase in synaptic activity, compared with baseline and/or interictal activity, estimated by the variance of the intracellular signal in the absence of epileptic bursts and action potentials (0.38 mV2, compared with 0.13 mV2, and 0.1 mV2, respectively). No significant increases were observed in the interval preceding spontaneous interictal activity. These studies show that focal assemblies of hippocampal neurons, without long reentrant loops, are sufficient for the generation of SLEs. We propose that a key factor in the transition from interictal activity to SLEs is an increase in axonal and terminal excitability, resulting, at least in part, from elevations in [K+]o.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3