Affiliation:
1. Motor Control and Physical Therapy Research Laboratory, Department of Physical Therapy, Karolinska Institutet, 171 77 Stockholm, Sweden; and
2. Department of Physical Therapy, University of Iceland, 101 Reykjavik, Iceland
Abstract
The purpose of this study was to test the hypothesis whether weight transfer during sit-to-stand (STS) is the result of coordinated ground forces exerted by buttocks and feet before seat-off. Whole-body kinematics and three-dimensional ground forces from left and right buttock as well as from left and right foot were recorded for seven adults during STS. We defined a preparatory phase from onset of the first detectable anterior/posterior (A/P) force to seat-off (buttock forces fell to 0) and a rising phase from seat-off to the decrease of center of mass (CoM) vertical velocity to zero. STS was induced by an increase of vertical and backward directed ground forces exerted by the buttocks that significantly preceded the onset of any trunk movement. All ground forces peaked before or around the moment of seat-off, whereas all kinematic variables, except trunk forward rotation and hip flexion, peaked after seat-off, during or after the rising phase. The present study suggests that the weight transfer from sit to stand is induced by ground forces exerted by buttocks and feet before seat-off, i.e., during the preparatory phase. The buttocks generate the isometric “rising forces,” e.g., the propulsive impulse for the forward acceleration of the body, while the feet apply adequate damping control before seat-off. This indicates that the rising movement is a result of these coordinated forces, targeted to match the subject's weight and support base distance between buttocks and feet. The single peaked, bell-shaped profiles peaking before seat-off, were seen beneath buttocks for the “rising drive,” i.e., between the time of peak backward directed force and seat-off, as well as beneath the feet for the “damping drive,” i.e., from onset to the peak of forward-directed force and for CoM A/P velocity. This suggests that both beginning and end of the weight transfer process are programmed before seat-off. The peak deceleration of A/P CoM took place shortly (∼100 ms) after CoM peak velocity, resulting in a well controlled CoM deceleration before seat-off. In contrast to the view of other authors, this suggests that body equilibrium is controlled during weight transfer.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献