Receptor Potentials and Electrical Properties of Nonspiking Stretch-Receptive Neurons in the Sand Crab Emerita analoga (Anomura, Hippidae)

Author:

Paul Dorothy H.1,Bruner Jan1

Affiliation:

1. Biology Department, University of Victoria, Victoria, British Columbia V8W 3N5, Canada

Abstract

Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae). Four nonspiking, monopolar neurons with central somata and large peripheral dendrites constitute the sole innervation of the telson-uropod elastic strand stretch receptor in Emerita analoga. We characterized their responses to stretch and current injection, using two-electrode current clamp, in intact cells and in two types of isolated peripheral dendritic segments, one that included and one that excluded the dendritic termini (mechanosensory membrane). The membrane potentials of intact cells at rest (mean ± SD: −57 ± 4.4 mV, n = 30), recorded in peripheral or neuropil processes, are similar to the membrane potentials of isolated dendritic segments and always less negative than membrane potentials of motoneurons and interneurons recorded in the same preparations. Ion substitution experiments indicate that the membrane potential is influenced strongly by Na+ conductance, probably localized in the mechanotransducing terminals within the elastic strand. The form of the receptor potential in response to ramp-hold-release stretch remains the same as stretch amplitude is varied and is not dependent on initial membrane potential (−70 to −30 mV) or recording site: initial depolarization (slope follows ramp of applied stretch), terminated by rapid, partial repolarization to a plateau (delayed depolarization) that is intermediate between the peak depolarization and the initial potential and sustained for the duration of the stretch. Responses to depolarizing current pulses are similar to stretch-evoked receptor potentials, except for small amplitude stimuli: an initial peak occurs only in response to stretch and probably reflects elastic recoil of the extracellular matrix surrounding the dendritic terminals. The rapid, partial repolarization depends on holding potential and is abolished by 4-aminopyridine (4-AP; 10 mM), implicating a fast-activating, fast-inactivating K+ conductance; TEA (60 mM) abolishes the remaining slow repolarization to the plateau. In intact cells, but not dendritic segments, regenerative depolarizations can arise in response to stretch or depolarizing current pulses; they are reduced by CdCl2 (10 μM) in the saline containing TEA and 4-AP and probably reflect current spread from Ca2+ influx at presynaptic terminals in the ganglion. We found no evidence for other voltage-activated conductances. Unlike morphologically similar “nonspiking” thoracic receptors of other species, E. analoga’s nonspiking neurons are electrically compact and do not boost the analogue afferent signal by voltage-activated inward currents. The most prominent (only?) voltage-activated extra-ganglionic conductances are for potassium; by reducing the slope of the stretch-plateau depolarization curve, they extend each neuron’s functional range to the full range of sensitivity of the receptor.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3