Asynchrony of Quantal Events in Evoked Multiquantal Responses Indicates Presynaptic Quantal Interaction

Author:

Bykhovskaia Maria12,Hackett John T.1,Worden Mary Kate1

Affiliation:

1. Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22906-0011; and

2. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia 194223

Abstract

Asynchrony of quantal events in evoked multiquantal responses indicates presynaptic quantal interaction. We have analyzed the possibility of quantal interactions by inspecting action potential-evoked postsynaptic multiquantal responses recorded extracellularly from the lobster neuromuscular junction. These recorded responses were compared with simulated multiquantal responses constructed from statistically independent quantal events. The simulated multiquantal responses were generated by random superposition of single quantal responses aligned according to the timing of the action potential. The methods of analysis consisted of 1) the comparison of quantal contents obtained from direct counting or by measuring of the size of the responses and 2) the analysis of distributions of quantal latencies. This analysis revealed a large error in the detection of quantal events for responses simulated with no quantal interaction. In contrast, very few errors in quantal detection were made in the analysis of experimental recordings. Latency histograms of recorded responses demonstrate that the proportion of late quantal events (those with latencies of ≥5 ms) increased as a function of quantal content. This shift in latency histograms was not observed for simulated responses. Our interpretation is that quanta interact presynaptically to cause asynchrony of quantal events in evoked responses.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3