Characteristics of Simian Adaptation Fields Produced by Behavioral Changes in Saccade Size and Direction

Author:

Noto Christopher T.1,Watanabe Shoji1,Fuchs Albert F.1

Affiliation:

1. Regional Primate Research Center and Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7330

Abstract

Characteristics of adaptation fields produced by behavioral changes in saccade size and direction. The gain of saccadic eye movements can be altered gradually by moving targets either forward or backward during targeting saccades. If the gain of saccades to targets of only one size is adapted, the gain change generalizes or transfers only to saccades with similar vectors. In this study, we examined the spatial extent of such saccadic size adaptation, i.e., the gain adaptation field. We also attempted to adapt saccade direction by moving the target orthogonally during the targeting saccade to document the extent of a direction or cross-axis adaptation field. After adaptive gain decreases of horizontal saccades to 15° target steps, >82% of the gain reduction transferred to saccades to 25° horizontal target steps but only ∼30% transferred to saccades to 5° steps. For the horizontal component of oblique saccades to target steps with 15° horizontal components and 10° upward or downward vertical components, the transfer was similar at 51 and 60%, respectively. Thus the gain decrease adaptation field was quite asymmetric in the horizontal dimension but symmetric in the vertical dimension. Although gain increase adaptation produced a smaller gain change (13% increase for a 30% forward adapting target step) than did gain decrease adaptation (20% decrease for a 30% backward adapting target step), the spatial extent of gain transfer was quite similar. In particular, the gain increase adaptation field displayed asymmetry in the horizontal dimension (58% transfer to 25° saccades but only 32% transfer to 5° saccades) and symmetry in the vertical direction (50% transfer to the horizontal component of 10° upward and 40% transfer to 10° downward oblique saccades). When a 5° vertical target movement was made to occur during a saccade to a horizontal 10° target step, a vertical component gradually appeared in saccades to horizontal targets. More than 88% of the cross-axis change in the vertical component produced in 10° saccades transferred to 20° saccades but only 12% transferred to 4° saccades. The transfer was similar to the vertical component of oblique saccades to target steps with either 10° upward (46%) or 10° downward (46%) vertical components. Therefore both gain and cross-axis adaptation fields have similar spatial profiles. These profiles resemble those of movement fields of neurons in the frontal eye fields and superior colliculus. How those structures might participate in the adaptation process is considered in the discussion.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3