Affiliation:
1. Marine Biomedical Institute, University of Texas Medical Branch, Galveston, Texas 77555-1069
Abstract
The parapodial neuromuscular junction in the marine snail Aplysia brasiliana is a model synapse for the investigation of neural modulation. The parapodial muscle fibers are innervated by cholinergic motoneurons and by serotonergic modulatory cells. The physiological properties of voltage-gated currents of the muscle membranes and the effects of serotonin on these currents have been published previously. However, the pharmacological properties of the cholinergic receptors have not been investigated. Acetylcholine (ACh) applied exogenously to dissociated muscle fibers produces a response with a reversal potential of about −52 mV; the resting membrane potential of the average muscle fiber is approximately −56 mV. ACh induces variable responses (depolarizations or hyperpolarizations) in individual cells, but the transmitter never causes a depolarization adequate to produce muscle contraction. We demonstrate that the ACh response is the result of the activation of two distinct receptors. One receptor is linked to a chloride channel and induces a hyperpolarization with a reversal potential near −70 mV. This receptor is activated selectively by suberyldicholine and by nicotine and is antagonized by curare but not by hexamethonium. The second response, presumably caused by increased conductance to mixed cations, results in muscle fiber depolarization with a reversal potential near −35 mV and does induce muscle contraction. This receptor is activated by methylcarbamylcholine and selectively blocked by hexamethonium; atypically, this receptor is not activated by nicotine nor by carbachol. The depolarizing, cation-selective receptors likely are associated with identified excitatory cholinergic motoneurons the activity of which typically results in muscle contractions because the reversal potential for this ACh response is more depolarized than the activation threshold for voltage-gated calcium channels in these fibers. The hyperpolarizing, chloride-selective receptors may be associated with inhibitory motoneurons; such motoneurons have yet to be identified, but their presence is inferred because of the occurrence of spontaneous inhibitory junctional potentials recording from muscle fibers in situ. Muscle fiber responses to exogenously applied ACh reflect the relative contribution of each receptor type in each muscle fiber.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献