Enhanced NR2A Subunit Expression and Decreased NMDA Receptor Decay Time at the Onset of Ocular Dominance Plasticity in the Ferret

Author:

Roberts Elizabeth B.1,Ramoa Ary S.1

Affiliation:

1. Department of Anatomy, Visual/Motor Neuroscience Division, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0709

Abstract

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor–mediated synaptic responses decrease in duration after the peak of cortical plasticity in rodents. Accordingly, it is believed that shortening of the NMDA receptor–mediated current underlies the developmental reduction of ocular dominance plasticity. However, some previous evidence actually suggests that the duration of NMDA receptor currents decreases before the peak of plasticity. In the present study, we have examined the time course of NMDA receptor changes and how they correlate with the critical period of ocular dominance plasticity in the visual cortex of a highly binocular animal, the ferret. The expression of NMDA receptor subunits NR1, NR2A, and NR2B was examined in animals ranging in age from postnatal day 16 to adult using Western blotting. Functional properties of NMDA receptors in layer IV cortical neurons were studied using whole cell patch-clamp techniques in an in vitro slice preparation of ferret primary visual cortex. We observed a remarkable increase in NR1 and NR2A, but not NR2B, expression after eye opening. The NMDA receptor–mediated synaptic currents showed an abrupt decrease in decay time concurrent with the increase in NR2A subunit expression. Importantly, these changes occurred in parallel with increased ocular dominance plasticity reported in the ferret. In conclusion, molecular changes leading to decreased duration of the NMDA receptor excitatory postsynaptic current may be a requirement for the onset, rather than the end, of the critical period of ocular dominance plasticity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3