Focal Epileptogenesis in a Rat Model of Polymicrogyria

Author:

Jacobs Kimberle M.1,Hwang Bryan J.1,Prince David A.1

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California 94305

Abstract

Jacobs, Kimberle M., Bryan J. Hwang, and David A. Prince. Focal epileptogenesis in a rat model of polymicrogyria. J. Neurophysiol. 81: 159–173, 1999. Polymicrogyria, a developmental cortical malformation associated with epilepsy, can be modeled in rats with a transcortical freeze lesion on the day of birth (P0) or P1. We have used field potential recordings to characterize the incidence, propagation patterns, and distribution of epileptiform activity in slices from rats with experimental microgyri. Interictal-like epileptiform activity was evoked in slices from 85% of freeze-lesioned rats aged P12–P118. These data show age-specific properties of epileptogenesis, including: a delay in onset, a decrease in the incidence of epileptiform activity in rats >P40 that was specific to those lesioned on P0 as opposed to P1, and a shift in the likely site of initiation to areas further from the microgyrus in mature animals. Several observations suggest that the area adjacent to the microgyrus, which appears histologically normal in Nissl stains, contains the necessary epileptogenic neuronal circuits: 1) in 78% of slices, epileptiform activity could be evoked only from a focal zone adjacent to the microgyrus (paramicrogyral zone) and not within the microgyrus proper; 2) epileptiform activity consistently originated from a particular site within this paramicrogyral zone, independent of the location of the stimulating electrode, suggesting that the generator is outside of the microgyrus; 3) evoked epileptiform activities in the paramicrogyral cortex were unaltered after separation of this zone from the microgyrus with a transcortical cut; and 4) the short-latency graded field potential evoked in the paramicrogyral zone contained an additional negativity not seen in control slices. The epileptiform activity was blocked reversibly by N-methyl-d-aspartate receptor antagonists in slices from mature as well as immature freeze-lesioned rats. These results suggest that aberrant synaptic connectivity develops in rat cortex surrounding the microgyrus and produces a focal epileptogenic zone whose capacity to generate epileptiform activities does not depend on connections with the malformation itself. We hypothesize that afferents, originating from cortical and extracortical sites, lose their targets in the region of the malformation and make appropriate laminar contacts in the cortex adjacent to the malformation, creating an overabundance of excitatory input to this cortical zone. Increased excitatory feedback onto specific cortical elements may be one factor involved in epileptogenesis in this model of a cortical malformation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3