Movements and Muscle Activity Initiated by Brain Locomotor Areas in Semi-Intact Preparations From Larval Lamprey

Author:

Jackson Adam W.,Pino Felicity A.,Wiebe Erica D.,McClellan Andrew D.

Abstract

In in vitro brain/spinal cord preparations from larval lamprey, locomotor-like ventral root burst activity can be initiated by pharmacological (i.e., “chemical”) microstimulation in several brain areas: rostrolateral rhombencephalon (RLR); dorsolateral mesencephalon (DLM); ventromedial diencephalon (VMD); and reticular nuclei. However, the quality and symmetry of rhythmic movements that would result from this in vitro burst activity have not been investigated in detail. In the present study, pharmacological microstimulation was applied to the above brain locomotor areas in semi-intact preparations from larval lamprey. First, bilateral pharmacological microstimulation in the VMD, DLM, or RLR initiated symmetrical swimming movements and coordinated muscle burst activity that were virtually identical to those during free swimming in whole animals. Unilateral microstimulation in these brain areas usually elicited asymmetrical undulatory movements. Second, with synaptic transmission blocked in the brain, bilateral pharmacological microstimulation in parts of the anterior (ARRN), middle (MRRN), or posterior (PRRN) rhombencephalic reticular nucleus also initiated symmetrical swimming movements and muscle burst activity. Stimulation in effective sites in the ARRN or PRRN initiated higher-frequency locomotor movements than stimulation in effective sites in the MRRN. Unilateral stimulation in reticular nuclei elicited asymmetrical rhythmic undulations or uncoordinated movements. The present study is the first to demonstrate in the lamprey that stimulation in higher-order locomotor areas (RLR, VMD, DLM) or reticular nuclei initiates and sustains symmetrical, well-coordinated locomotor movements and muscle activity. Finally, bilateral stimulation was a more physiologically realistic test of the function of these brain areas than unilateral stimulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3