Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets

Author:

Blouin Jean1,Saradjian Anahid H.1,Lebar Nicolas1,Guillaume Alain1,Mouchnino Laurence1

Affiliation:

1. Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France

Abstract

Behavioral studies have suggested that the brain uses a visual estimate of the hand to plan reaching movements toward visual targets and somatosensory inputs in the case of somatosensory targets. However, neural correlates for distinct coding of the hand according to the sensory modality of the target have not yet been identified. Here we tested the twofold hypothesis that the somatosensory input from the reaching hand is facilitated and inhibited, respectively, when planning movements toward somatosensory (unseen fingers) or visual targets. The weight of the somatosensory inputs was assessed by measuring the amplitude of the somatosensory evoked potential (SEP) resulting from vibration of the reaching finger during movement planning. The target sensory modality had no significant effect on SEP amplitude. However, Spearman's analyses showed significant correlations between the SEPs and reaching errors. When planning movements toward proprioceptive targets without visual feedback of the reaching hand, participants showing the greater SEPs were those who produced the smaller directional errors. Inversely, participants showing the smaller SEPs when planning movements toward visual targets with visual feedback of the reaching hand were those who produced the smaller directional errors. No significant correlation was found between the SEPs and radial or amplitude errors. Our results indicate that the sensory strategy for planning movements is highly flexible among individuals and also for a given sensory context. Most importantly, they provide neural bases for the suggestion that optimization of movement planning requires the target and the reaching hand to both be represented in the same sensory modality.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3