Spatial variation in membrane excitability modulated by 4-AP-sensitive K+ channels in the axons of the crayfish neuromuscular junction

Author:

Lin Jen-Wei1

Affiliation:

1. Biology Department, Boston University, Boston, Massachusetts

Abstract

Current-clamp recordings were made from the primary (1°) and secondary (2°) branching points (BPs) of axons at the crayfish neuromuscular junction. Action potential (AP) firing initiated by current injected at the 2° BP showed strong adaptation or high-frequency firing at threshold current, whereas AP firing frequency at the 1° BP exhibited a gradual rise with increasing current amplitude. The voltage threshold for AP ( VTH) was higher at the 2° BP than the 1° BP. 4-Aminopyridine (4-AP) at 200 μM increased AP amplitude and duration at both BPs but reduced threshold current at the 2° BP more than at the 1° BP. This blocker lowered VTH at both BPs, but the difference between the BPs remained. Firing patterns evoked at the 2° BP became similar to those evoked at the 1° BP in 4-AP. Thus 4-AP-sensitive channels may be more concentrated in the distal axon and control AP initiation and firing patterns there. Orthodromic APs between the two BPs were also compared. There was no difference in AP amplitude between the two BPs, but AP half-width recorded at the 2° BP was longer than that at the 1° BP. AP duration at both BPs increased gradually, by ∼17%, during a 100-Hz, 500-ms train (in-train rise). Normalized AP half-widths revealed a smaller fractional in-train rise at the 2° BP. Thus, although distal APs were broader, AP duration there was under more stringent control than that of the proximal axon. 4-AP increased AP amplitude and duration of the entire orthodromic train and reduced the magnitude of the in-train rise in AP half-width at both BPs. However, this blocker did not uncover a clear difference between the two BPs. Thus 4-AP-sensitive channels concentrated in distal axon may be essential in preventing unintended firing and modulating AP waveform without interfering with orthodromic AP propagation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3