Transformation of spatial sensitivity along the ascending auditory pathway

Author:

Yao Justin D.12,Bremen Peter32,Middlebrooks John C.13245

Affiliation:

1. Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California;

2. Center for Hearing Research, University of California at Irvine, Irvine, California;

3. Department of Otolaryngology, University of California at Irvine, Irvine, California;

4. Department of Cognitive Sciences, University of California at Irvine, Irvine, California;

5. Department of Biomedical Engineering, University of California at Irvine, Irvine, California

Abstract

Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, sound-level-tolerant responses to ipsilateral sounds. We surveyed the auditory pathway in anesthetized rats to identify the brain level(s) at which level-tolerant spatial sensitivity arises. Noise-burst stimuli were varied in horizontal sound location and in sound level. Neurons in the central nucleus of the inferior colliculus (ICc) displayed contralateral tuning at low sound levels, but tuning was degraded at successively higher sound levels. In contrast, neurons in the nucleus of the brachium of the inferior colliculus (BIN) showed sharp, level-tolerant spatial sensitivity. The ventral division of the medial geniculate body (MGBv) contained two discrete neural populations, one showing broad sensitivity like the ICc and one showing sharp sensitivity like A1. Dorsal, medial, and shell regions of the MGB showed fairly sharp spatial sensitivity, likely reflecting inputs from A1 and/or the BIN. The results demonstrate two parallel brainstem pathways for spatial hearing. The tectal pathway, in which sharp, level-tolerant spatial sensitivity arises between ICc and BIN, projects to the superior colliculus and could support reflexive orientation to sounds. The lemniscal pathway, in which such sensitivity arises between ICc and the MGBv, projects to the forebrain to support perception of sound location.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders

HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3