Sound Localization Deficits During Reversible Deactivation of Primary Auditory Cortex and/or the Dorsal Zone

Author:

Malhotra Shveta,Stecker G. Christopher,Middlebrooks John C.,Lomber Stephen G.

Abstract

We examined the contributions of primary auditory cortex (A1) and the dorsal zone of auditory cortex (DZ) to sound localization behavior during separate and combined unilateral and bilateral deactivation. From a central visual fixation point, cats learned to make an orienting response (head movement and approach) to a 100-ms broadband noise burst emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90° to right 90°, at 15° intervals) along the horizontal plane. Following training, each cat was implanted with separate cryoloops over A1 and DZ bilaterally. Unilateral deactivation of A1 or DZ or simultaneous unilateral deactivation of A1 and DZ (A1/DZ) resulted in spatial localization deficits confined to the contralateral hemifield, whereas sound localization to positions in the ipsilateral hemifield remained unaffected. Simultaneous bilateral deactivation of both A1 and DZ resulted in sound localization performance dropping from near-perfect to chance (7.7% correct) across the entire field. Errors made during bilateral deactivation of A1/DZ tended to be confined to the same hemifield as the target. However, unlike the profound sound localization deficit that occurs when A1 and DZ are deactivated together, deactivation of either A1 or DZ alone produced partial and field-specific deficits. For A1, bilateral deactivation resulted in higher error rates (performance dropping to ∼45%) but relatively small errors (mostly within 30° of the target). In contrast, bilateral deactivation of DZ produced somewhat fewer errors (performance dropping to only ∼60% correct), but the errors tended to be larger, often into the incorrect hemifield. Therefore individual deactivation of either A1 or DZ produced specific and unique sound localization deficits. The results of the present study reveal that DZ plays a role in sound localization. Along with previous anatomical and physiological data, these behavioral data support the view that A1 and DZ are distinct cortical areas. Finally, the findings that deactivation of either A1 or DZ alone produces partial sound localization deficits, whereas deactivation of either posterior auditory field (PAF) or anterior ectosylvian sulcus (AES) produces profound sound localization deficits, suggests that PAF and AES make more significant contributions to sound localization than either A1 or DZ.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3