Retinal Bipolar Cell Input Mechanisms in Giant Danio. I. Electroretinographic Analysis

Author:

Wong Kwoon Y.,Adolph Alan R.,Dowling John E.

Abstract

Electroretinograms (ERGs) were recorded from the giant danio ( Danio aequipinnatus) to study glutamatergic input mechanisms onto bipolar cells. Glutamate analogs were applied to determine which receptor types mediate synaptic transmission from rods and cones to on and off bipolar cells. Picrotoxin, strychnine, and tetrodotoxin were used to isolate the effects of the glutamate analogs to the photoreceptor–bipolar cell synapse. Under photopic conditions, the group III metabotropic glutamate receptor (mGluR) antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG) only slightly reduced the b-wave, whereas the excitatory amino acid transporter (EAAT) blocker dl- threo-β-benzyl-oxyaspartate (TBOA) removed most of it. Complete elimination of the b-wave required both antagonists. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) blocked the d-wave. Under scotopic conditions, rod and cone inputs onto on bipolar cells were studied by comparing the sensitivities of the b-wave to photopically matched green and red stimuli. The b-wave was >1 log unit more sensitive to the green than to the red stimulus under control conditions. In CPPG or l-AP4 (l-(+)-2-amino-4-phosphonobutyric acid, a group III mGluR agonist), the sensitivity of the b-wave to the green stimulus was dramatically reduced and the b-waves elicited by the 2 stimuli became nearly matched. The d-wave elicited by dim green stimuli, which presumably could be detected only by the rods, was eliminated by NBQX. In conclusion: 1) cone signals onto on bipolar cells involve mainly EAATs but also mGluRs (presumably mGluR6) to a lesser extent; 2) rods signal onto on bipolars by mainly mGluR6; 3) off bipolar cells receive signals from both photoreceptor types by AMPA/kainate receptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3