Y5 Receptors Mediate Neuropeptide Y Actions at Excitatory Synapses in Area CA3 of the Mouse Hippocampus

Author:

Guo Hui1,Castro Peter A.1,Palmiter Richard D.2,Baraban Scott C.13

Affiliation:

1. Department of Neurological Surgery and

2. Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195

3. The Graduate Program in Neuroscience, University of California, San Francisco, California 94143; and

Abstract

Neuropeptide Y (NPY) is a potent modulator of excitatory synaptic transmission and limbic seizures. NPY is abundantly expressed in the dentate gyrus and is thought to modulate hippocampal excitability via activation of presynaptic Y2 receptors (Y2R). Here we demonstrate that NPY, and commonly used Y2R-preferring (NPY13–36) and Y5 receptor (Y5R)–preferring ([d-Trp32]NPY and hPP) peptide agonists, evoke similar levels of inhibition at excitatory CA3 synapses in hippocampal slices from wild-type control mice (WT). In contrast, NPYergic inhibition of excitatory CA3 synaptic transmission is absent in mice lacking the Y5R subtype (Y5R KO). In both analyses of evoked population spike activity and spontaneous excitatory postsynaptic synaptic currents (EPSCs), NPY agonists induced powerful inhibitory effects in all hippocampal slices from WT mice, whereas these peptides had no effect in slices from Y5R KO mice. In slices from WT mice, NPY (and NPY receptor–preferring agonists) reduced the frequency of spontaneous EPSCs but had no effect on sEPSC amplitude, rise time, or decay time. Furthermore, NPYergic modulation of spontaneous EPSCs in WT mice was mimicked by bath application of a novel Y5R-selective peptide agonist ([cpp]hPP) but not the selective Y2R agonist ([ahx5–24]NPY). In situ hybridization was used to confirm the presence of NPY, Y2, and Y5 mRNA in the hippocampus of WT mice and the absence of Y5R in knockout mice. These results suggest that the Y5 receptor subtype, previously believed to mediate food intake, plays a critical role in modulation of hippocampal excitatory transmission at the hilar-to-CA3 synapse in the mouse.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3