Upper Thoracic Respiratory Interneurons Integrate Noxious Somatic and Visceral Information in Rats

Author:

Qin Chao1,Chandler Margaret J.1,Foreman Robert D.1,Farber Jay P.1

Affiliation:

1. Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Abstract

The aim of this study was to determine if thoracic respiratory interneurons (TRINs) might receive peripheral noxious somatic and visceral inputs. Extracellular potentials of 78 respiration-related T3 neurons, whose activity was driven by central respiratory output, were recorded from the intermediate zone in pentobarbital anesthetized, paralyzed, and ventilated male rats. These neurons were identified as interneurons by their locations and by the absence of antidromic activation from the cervical sympathetic trunk and cerebellum. Thoracic esophageal distension (ED) was produced by water inflation of a latex balloon (0.1–0.5 ml, 20 s). A catheter was placed in the pericardial sac to administer 0.2 ml bradykinin (10−5 M) for noxious cardiac stimulation. Of 78 TRINs examined for ED, activity of 24 TRINs increased and activity of 8 TRINs decreased. Intrapericardial bradykinin increased activity in 26/65 TRINs tested and decreased activity in 5 TRINs. Seventy-four TRINs were tested for effects of brush, pressure, and pinch of the chest and upper back areas. No TRINs responded to brushing hair. Low-threshold responses to pressure were observed in 27 TRINs. Fourteen TRINs were wide dynamic range and 4 TRINs had high-threshold responses. Peripheral stimuli affected all types of TRINs, including inspiratory, expiratory, and biphasic neurons. Simultaneous phrenic recordings showed that effects of various somatic and visceral stimuli on TRINs were independent of central respiratory drive. Various somatovisceral and viscerovisceral patterns of input were observed in TRINs. The results suggested that TRINs participate in intraspinal processing and integration of nociceptive information from somatic fields and visceral organs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3