P2Y1 receptor modulation of Ca2+-activated K+ currents in medium-sized neurons from neonatal rat striatal slices

Author:

Coppi E.12,Pedata F.2,Gibb A. J.1

Affiliation:

1. Research Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom; and

2. Department of Pharmacology, University of Florence, Italy

Abstract

ATP signaling to neurons and glia in the nervous system occurs via activation of both P2Y and P2X receptors. Here, we investigated the effects of P2Y1 receptor stimulation in developing striatal medium-sized neurons using patch-clamp recordings from acute brain slices of 7- and 28-day-old rats. Application of the selective P2Y1 receptor agonist 2-(Methylthio) ADP trisodium salt (2-MeSADP; 250 nM) increased outward K+ currents evoked by a ramp depolarization protocol in voltage-clamp recordings. This effect was observed in 59 out of 82 cells (72%) and was blocked completely by the P2Y1 antagonist, 2′-deoxy- N6-methyl adenosine 3′,5′-diphosphate. The averaged 2-MeSADP-sensitive conductance was fitted by the sum of a linear conductance and a Boltzmann relation, giving one-half activation voltage of −14.2 mV and an equivalent charge of 2.91. The 2MeSADP-mediated effect was sensitive to submillimolar concentrations of tetraethylammonium (TEA; 200 μM), to 200 nM iberiotoxin and to 100 nM apamin, suggesting the involvement of both big and small potassium (BK and SK, respectively) calcium-activated channels. In current-clamp experiments, 2-MeSADP decreased depolarization-evoked action potential (AP) firing in all 26 cells investigated, and this effect was reversed by TEA and by apamin but not by iberiotoxin. We conclude that the stimulation of P2Y1 receptors in developing striatal neurons leads to activation of calcium-activated potassium channels [IK(Ca)] of both BK and SK subtypes, the latter responsible for decreasing the frequency of AP firing in response to current injection. Therefore, P2Y1 signaling leading to activation of IK(Ca) may be important in regulating the activity of medium-sized neurons in the striatum.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3