Topographical representations of taste response characteristics in the rostral nucleus of the solitary tract in the rat

Author:

Yokota T.1,Eguchi K.1,Hiraba K.1

Affiliation:

1. Department of Physiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan

Abstract

The rostral nucleus of the solitary tract (rNST) is the first-order taste relay in rats. This study constructed topographical distributions of taste response characteristics (best-stimulus, response magnitude, and taste-tuning) from spike discharges of single neurons in the rNST. The rNST is divided into four subregions along the rostrocaudal (RC) axis, which include r1–r4. We explored single-neuron activity in r1–r3, using multibarreled glass microelectrodes. NaCl (N)-best neurons were localized to the rostral half of r1–r3, while HCl (H)-best and sucrose (S)-best neurons showed a tendency toward more caudal locations. NaCl and HCl (NH)-best neurons were distributed across r2–r3. The mean RC values and Mahalanobis distance indicated a significant difference between the distributions of N-best and NH-best neurons in which N-best neurons were located more rostrally. The region of large responses to NaCl (net response >5 spikes/s) overlapped with the distribution of N-best neurons. The region of large responses to HCl extended widely over r1–r3. The region of large responses to sucrose was in the medial part of r2. The excitatory region (>1 spike/s) for quinine overlapped with that for HCl. Neurons with sharp to moderate tuning were located primarily in r1–r2, while those with broad tuning were located in r2–r3. The robust responses to NaCl in r1–r2 primarily contributed to sharp to moderate taste-tuning. Neurons in r3 tended to have broad tuning, apparently due to small responses to both NaCl and HCl. Therefore, the rNST is spatially organized by neurons with distinct taste response characteristics, suggesting that these neurons serve different functional roles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3