Amplitude and Direction of Saccadic Eye Movements Depend on the Synchronicity of Collicular Population Activity

Author:

Brecht Michael,Singer Wolf,Engel Andreas K.

Abstract

Synchronization of neuronal discharges has been observed in numerous brain structures, but opinions diverge regarding its significance in neuronal processing. Here we investigate whether the motion vectors of saccadic eye movements evoked by electrical multisite stimulation of the cat superior colliculus (SC) are influenced by varying the degree of synchrony between the stimulus trains. With synchronous activation of SC sites, the vectors of the resulting saccades correspond approximately to the averages of the vectors of saccades evoked from each site alone. In contrast, when the pulses of trains applied to the different sites are temporally offset by as little as 5–10 ms, the vectors of the resulting saccades come close to the sum of the individual vectors. Thus saccade vectors depend not only on the site and amplitude of collicular activation but also on the precise temporal relations among the respective spike trains. These data indicate that networks within or downstream from the SC discriminate with high temporal resolution between synchronous and asynchronous population responses. This supports the hypothesis that information is encoded not only in the rate of neuronal responses but also in the precise temporal relations between discharges.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3