Corticospinal gating during action preparation and movement in the primate motor cortex

Author:

Soteropoulos Demetris S.1

Affiliation:

1. Institute of Neuroscience, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom

Abstract

During everyday actions there is a need to be able to withhold movements until the most appropriate time. This motor inhibition is likely to rely on multiple cortical and subcortical areas, but the primary motor cortex (M1) is a critical component of this process. However, the mechanisms behind this inhibition are unclear, particularly the role of the corticospinal system, which is most often associated with driving muscles and movement. To address this, recordings were made from identified corticospinal (PTN, n = 94) and corticomotoneuronal (CM, n = 16) cells from M1 during an instructed delay reach-to-grasp task. The task involved the animals withholding action for ~2 s until a GO cue, after which they were allowed to reach and perform the task for a food reward. Analysis of the firing of cells in M1 during the delay period revealed that, as a population, non-CM PTNs showed significant suppression in their activity during the cue and instructed delay periods, while CM cells instead showed a facilitation during the preparatory delay. Analysis of cell activity during movement also revealed that a substantial minority of PTNs (27%) showed suppressed activity during movement, a response pattern more suited to cells involved in withholding rather than driving movement. These results demonstrate the potential contributions of the M1 corticospinal system to withholding of actions and highlight that suppression of activity in M1 during movement preparation is not evenly distributed across different neural populations. NEW & NOTEWORTHY Recordings were made from identified corticospinal (PTN) and corticomotoneuronal (CM) cells during an instructed delay task. Activity of PTNs as a population was suppressed during the delay, in contrast to CM cells, which were facilitated. A minority of PTNs showed a rate profile that might be expected from inhibitory cells and could suggest that they play an active role in action suppression, most likely through downstream inhibitory circuits.

Funder

Medical Research Council (MRC)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3