β3-Adrenergic receptor-dependent modulation of the medium afterhyperpolarization in rat hippocampal CA1 pyramidal neurons

Author:

Church Timothy W.1,Brown Jon T.2,Marrion Neil V.1

Affiliation:

1. School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom

2. University of Exeter Medical School, Exeter, United Kingdom

Abstract

Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.

Funder

Medical Research Council (MRC)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3