Impairment of saccade adaptation in a patient with a focal thalamic lesion

Author:

Zimmermann E.12,Ostendorf F.34,Ploner C. J.3,Lappe M.1

Affiliation:

1. Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany;

2. Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany;

3. Department of Neurology, Charité—Universiätsmedizin Berlin, Berlin, Germany; and

4. Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany

Abstract

The frequent jumps of the eyeballs—called saccades—imply the need for a constant correction of motor errors. If systematic errors are detected in saccade landing, the saccade amplitude adapts to compensate for the error. In the laboratory, saccade adaptation can be studied by displacing the saccade target. Functional selectivity of adaptation for different saccade types suggests that adaptation occurs at multiple sites in the oculomotor system. Saccade motor learning might be the result of a comparison between a prediction of the saccade landing position and its actual postsaccadic location. To investigate whether a thalamic feedback pathway might carry such a prediction signal, we studied a patient with a lesion in the posterior ventrolateral thalamic nucleus. Saccade adaptation was tested for reactive saccades, which are performed to suddenly appearing targets, and for scanning saccades, which are performed to stationary targets. For reactive saccades, we found a clear impairment in adaptation retention ipsilateral to the lesioned side and a larger-than-normal adaptation on the contralesional side. For scanning saccades, adaptation was intact on both sides and not different from the control group. Our results provide the first lesion evidence that adaptation of reactive and scanning saccades relies on distinct feedback pathways from cerebellum to cortex. They further demonstrate that saccade adaptation in humans is not restricted to the cerebellum but also involves cortical areas. The paradoxically strong adaptation for outward target steps can be explained by stronger reliance on visual targeting errors when prediction error signaling is impaired.

Funder

BMBF Visuo-Spatial Cognition

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3