Discharge of Saccade-Related Superior Colliculus Neurons During Saccades Accompanied by Vergence

Author:

Walton Mark M. G.1,Mays Lawrence E.2

Affiliation:

1. Department of Psychology, University of Alabama, Birmingham, Alabama, 35294

2. Department of Physiological Optics, University of Alabama, Birmingham, Alabama, 35294

Abstract

It has long been believed that the superior colliculus (SC) is involved in the production of saccades but plays no role in the generation of vergence eye movements. However, results from several recent studies suggest that it may be worthwhile to examine the role of the SC in saccade-vergence interactions. Specifically, the available literature suggests two questions: do saccade-related neurons in SC have three-dimensional movement fields and is the slowing of saccades by vergence attributable, in part, to changes in the level of activity in SC? Single-unit data were recorded from 51 saccade-related neurons in rhesus monkey SC during saccades without vergence, saccades accompanied by convergence, and saccades accompanied by divergence. Most cells (78% for convergence, 86% for divergence) showed a significant reduction in peak spike density when the saccade was accompanied by vergence. A minority of cells (16% for convergence, 2% for divergence) increased their firing rate for saccades accompanied by vergence. Three cells were found that discharged in association with saccades, vergence, and the combination of the two. There were no cells that exhibited the pattern of discharge that would be expected of a cell tuned for saccades with divergence. Thus the present results do not support the hypothesis that saccade-related SC neurons are, as a rule, tuned in three dimensions. Small, but significant, differences in firing rate were often found for saccades without vergence at near and far distances. Approximately half of the cells showed a significant relationship between spike activity and saccade velocity, but the correlations tended to be very weak. This suggests that the decreased neuronal activity of SC neurons has only a limited effect on saccade velocity. For some cells, the movement field shifted for saccades with vergence. These shifts were highly variable from one cell to another.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3