A Theory of the Dual Pathways for Smooth Pursuit Based on Dynamic Gain Control

Author:

Nuding Ulrich,Ono Seiji,Mustari Michael J.,Büttner Ulrich,Glasauer Stefan

Abstract

The smooth pursuit eye movement (SPEM) system is much more sensitive to target motion perturbations during pursuit than during fixation. This sensitivity is commonly attributed to a dynamic gain control mechanism. Neither the neural substrate nor the functional architecture for this gain control has been fully revealed. There are at least two cortical areas that crucially contribute to smooth pursuit and are therefore eligible sites for dynamic gain control: the medial superior temporal area (MST) and the pursuit area of the frontal eye fields (FEFs), which both project to brain stem premotor structures via parallel pathways. The aim of this study was to develop a model of smooth pursuit based on behavioral, anatomical, and neurophysiological results to account for nonlinear dynamic gain control. Using a behavioral paradigm in humans consisting of a sinusoidal oscillation (4 Hz, ±8°/s) superimposed on a constant velocity target motion (0–24°/s), we were able to identify relevant gain control parameters in the model. A salient feature of our model is the emergence of two parallel pathways from higher visual cortical to lower motor areas in the brain stem that correspond to the MST and FEF pathways. Detailed analysis of the model revealed that one pathway mainly carries eye velocity related signals, whereas the other is associated mostly with eye acceleration. From comparison with known neurophysiological results we conclude that the dynamic gain control can be attributed to the FEF pathway, whereas the MST pathway serves as the basic circuit for maintaining an ongoing SPEM.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3