Population Anisotropy in Area MT Explains a Perceptual Difference Between Near and Far Disparity Motion Segmentation

Author:

Calabro Finnegan J.1,Vaina Lucia M.12

Affiliation:

1. Department of Biomedical Engineering, Boston University; and

2. Department of Neurology and Radiology, Harvard Medical School, Boston, Massachusetts

Abstract

Segmentation of the visual scene into relevant object components is a fundamental process for successfully interacting with our surroundings. Many visual cues, including motion and binocular disparity, support segmentation, yet the mechanisms using these cues are unclear. We used a psychophysical motion discrimination task in which noise dots were displaced in depth to investigate the role of segmentation through disparity cues in visual motion stimuli ( experiment 1). We found a subtle, but significant, bias indicating that near disparity noise disrupted the segmentation of motion more than equidistant far disparity noise. A control experiment showed that the near-far difference could not be attributed to attention ( experiment 2). To account for the near-far bias, we constructed a biologically constrained model using recordings from neurons in the middle temporal area (MT) to simulate human observers' performance on experiment 1. Performance of the model of MT neurons showed a near-disparity skew similar to that shown by human observers. To isolate the cause of the skew, we simulated performance of a model containing units derived from properties of MT neurons, using phase-modulated Gabor disparity tuning. Using a skewed-normal population distribution of preferred disparities, the model reproduced the elevated motion discrimination thresholds for near-disparity noise, whereas a skewed-normal population of phases (creating individually asymmetric units) did not lead to any performance skew. Results from the model suggest that the properties of neurons in area MT are computationally sufficient to perform disparity segmentation during motion processing and produce similar disparity biases as those produced by human observers.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3