Cocaine and exercise: α-1 receptor blockade does not alter muscle glycogenolysis or blood lactacidosis

Author:

Conlee Robert K.1,Kelly K. Patrick1,Ojuka Edward O.1,Hammer Roger L.1

Affiliation:

1. Human Performance Research Center, Brigham Young University, Provo, Utah 84602

Abstract

In our previous work, we routinely observed that a combined cocaine-exercise challenge results in an abnormally rapid muscle glycogen depletion and excessive blood lactacidosis. These phenomena occur simultaneously with a rapid rise in norepinephrine and in the absence of any rise in epinephrine. We postulated that norepinephrine may cause vasoconstriction of the muscle vasculature through activation of α-1 receptors during cocaine-exercise, thus inducing hypoxia and a concomitant rise in glycogenolysis and lactate accumulation. To test this hypothesis, rats were pretreated with the selective α-1-receptor antagonist prazosin (P) (0.1 mg/kg iv) or saline (S). Ten minutes later, the animals were treated with cocaine (-C) (5 mg/kg iv) or saline (-S) and run for 4 or 15 min at 22 m/min at 10% grade. In the S-S group, glycogen content of the white vastus lateralis muscle was unaffected by exercise at both time intervals, whereas in S-C rats glycogen was reduced by 47%. This effect of cocaine-exercise challenge was not attenuated by P. Similarly, blood lactate concentration in S-C rats was threefold higher than that of S-S after exercise, a response also not altered by pretreatment with P. On the basis of these observations, we conclude that the excessive glycogenolysis and lactacidosis observed during cocaine-exercise challenge is not the result of vasoconstriction secondary to norepinephrine activation of α-1 receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3