Computational modeling of RBC and neutrophil transit through the pulmonary capillaries

Author:

Huang Yaqi1,Doerschuk Claire M.2,Kamm Roger D.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139; and

2. Department of Environment Health, Harvard School of Public Health, Boston, Massachusetts 02115

Abstract

A computational model of the pulmonary microcirculation is developed and used to examine blood flow from arteriole to venule through a realistically complex alveolar capillary bed. Distributions of flow, hematocrit, and pressure are presented, showing the existence of preferential pathways through the system and of large segment-to-segment differences in all parameters, confirming and extending previous work. Red blood cell (RBC) and neutrophil transit are also analyzed, the latter drawing from previous studies of leukocyte aspiration into micropipettes. Transit time distributions are in good agreement with in vivo experiments, in particular showing that neutrophils are dramatically slowed relative to the flow of RBCs because of the need to contract and elongate to fit through narrower capillaries. Predicted neutrophil transit times depend on how the effective capillary diameter is defined. Transient blockage by a neutrophil can increase the local pressure drop across a segment by 100–300%, leading to temporal variations in flow and pressure as seen by videomicroscopy. All of these effects are modulated by changes in transpulmonary pressure and arteriolar pressure, although RBCs, neutrophils, and rigid microspheres all behave differently.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics-based in silico modelling of microvascular pulmonary perfusion in COVID-19;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-04-02

2. Integrative Computational Models of Lung Structure‐Function Interactions;Comprehensive Physiology;2021-02-12

3. Neutrophil granulocytes: participation in homeostatic and reparative processes. Part I;Russian Journal of Infection and Immunity;2020-11-27

4. Numerical analysis of the influence of RBCs on oxygen transport within a tissue with an embedded capillary network;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-09-03

5. Mechanical adaptation of monocytes in model lung capillary networks;Proceedings of the National Academy of Sciences;2020-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3