Affiliation:
1. Department of Anesthesiology, Chiba University School of Medicine, Chiba 260, Japan
2. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224; and
Abstract
To investigate the pathophysiological sequelae of sleep-disordered breathing (SDB), we have developed a mouse model in which hypoxia was induced during periods of sleep and was removed in response to arousal or wakefulness. An on-line sleep-wake detection system, based on the frequency and amplitude of electroencephalograph and electromyograph recordings, served to trigger intermittent hypoxia during periods of sleep. In adult male C57BL/6J mice ( n= 5), the sleep-wake detection system accurately assessed wakefulness (97.2 ± 1.1%), non-rapid eye movement (NREM) sleep (96.0 ± 0.9%) and rapid eye movement (REM) sleep (85.6 ± 5.0%). After 5 consecutive days of SDB, 554 ± 29 (SE) hypoxic events were recorded over a 24-h period at a rate of 63.6 ± 2.6 events/h of sleep and with a duration of 28.2 ± 0.7 s. The mean nadir of fraction of inspired O2 (Fi O2 ) on day 5 was 13.2 ± 0.1%, and 137.1 ± 13.2 of the events had a nadir Fi O2 <10% O2. Arterial blood gases confirmed that hypoxia of this magnitude lead to a significant degree of hypoxemia. Furthermore, 5 days of SDB were associated with decreases in both NREM and REM sleep during the light phase compared with the 24-h postintervention period. We conclude that our murine model of SDB mimics the rate and magnitude of sleep-induced hypoxia, sleep fragmentation, and reduction in total sleep time found in patients with moderate to severe SDB in the clinical setting.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献