Affiliation:
1. Department of Aerospace Physiology, The Fourth Military Medical University, Xi'an 710032, China
Abstract
Findings from recent bed rest and spaceflight human studies have indicated that the inability to adequately elevate the peripheral resistance and the altered autoregulation of cerebral vasculature are important factors in postflight orthostatic intolerance. Animal studies with rat model have revealed that simulated microgravity may induce upward and downward regulations in the structure, function, and innervation of the cerebral and hindquarter vessels. These findings substantiate in general the hypothesis that microgravity-induced redistribution of transmural pressures and flows across and within the arterial vasculature may well initiate differential adaptations of vessels in different anatomic regions. Understanding of the mechanisms involved in vascular adaptation to microgravity is also important for the development of multisystem countermeasures. However, future studies will be required to further ascertain the peripheral effector mechanism of postflight cardiovascular dysfunction.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
157 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献