Validation of a new live cell strain system: characterization of plasma membrane stress failure

Author:

Stroetz Randolph W.12,Vlahakis Nicholas E.1,Walters Bruce J.1,Schroeder Mark A.1,Hubmayr Rolf D.13

Affiliation:

1. Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine,

2. Division of Respiratory Therapy, Department of Anesthesiology, and

3. Department of Physiology and Biophysics, Mayo Clinic and Foundation, Rochester, Minnesota 55905

Abstract

Motivated by our interest in lung deformation injury, we report on the validation of a new live cell strain system. We showed that the system maintains a cell culture environment equivalent to that provided by conventional incubators and that its strain ouput was uniform and reproducible. With this system, we defined cell deformation dose (i.e., membrane strain amplitude)-cell injury response relationships in alveolar epithelial cultures and studied the effects of temperature on them. Deformation injury occurred in the form of reversible, nonlethal plasma membrane stress failure events and was quantified as the fraction of cells with uptake and retention of fluorescein-labeled dextran (FITC-Dx). The undeformed control population showed virtually no FITC-Dx uptake at any temperature, which was also true for cells strained by 3%. However, when the membrane strain was increased to 18%, ∼5% of cells experienced deformation injury at a temperature of 37°C. Moreover, at that strain, a reduction in temperature to 4°C resulted in a threefold increase in the number of cells with plasma membrane breaks (from 4.8 to 15.9%; P < 0.05). Cooling of cells to 4°C also lowered the strain threshold at which deformation injury was first seen. That is, at a 9% substratum strain, cooling to 4°C resulted in a 10-fold increase in the number of cells with FITC-Dx staining (0.7 vs. 7.5%, P < 0.05). At that temperature, A549 cells offered a 50% higher resistance to shape change (magnetic twisting cytometry measurements) than at 37°C. We conclude that the strain-injury threshold of A549 cells is reduced at low temperatures, and we consider temperature effects on plasma-membrane fluidity, cytoskeletal stiffness, and lipid trafficking as responsible mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3